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In this paper, a new structural damage detection approach based on changes in the

generalized flexibility matrix is presented. The generalized flexibility matrix is first

introduced; its sensitivity and change are then used to detect structural damage

location and damage extent. Compared with the original flexibility matrix based

this new approach. Finally, a numerical example for a simply supported beam is used to

illustrate the effectiveness of this proposed method.
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1. Introduction

It is well known that structural damage results in changes in dynamic characteristics of structures. There have been
many attempts which make use of the changes of measured modal parameters to locate and quantify damage. Extensive
overviews for methods to detect, locate and characterize damage in structural and mechanical systems by examining
changes in measured vibration response can be found in Doebling et al. [1] and Alvandi and Cremona [2]. Among these
methods, the approach based on flexibility change has drawn wide attention and it constitutes an important method for
structural damage detection [3–8]. The advantage is that the flexibility matrix can be accurately estimated using only a few
lower modes and it is very sensitive to damage. Pandey and Biswas [3] first proposed a method for damage detection based
on changes in flexibility. Bernal and Gunes put forward the damage locating vector method [4]. They further proposed to
use the flexibility proportional matrices method [5] to quantify damage without the use of a model. Qi et al. [6] formulated
a flexibility matrix based method for damage identification of truss structures. Cao and Friswell [7] proposed a modal
flexibility curvature method for nondestructive damage evaluation. Yang and Liu [8] made use of the eigenparameter
decomposition of structural flexibility change to detect structural damage. Although the flexibility identification
algorithms have been extensively developed, there are many difficulties inherent in these methods. One of the most
difficult problems is that it is very difficult to obtain accurate higher-order modal data.

In this paper, a new structural damage detection method, which uses the generalized flexibility matrix and its
sensitivity, is proposed. The generalized flexibility matrix is first introduced and its sensitivity is subsequently used to
detect structural damage. Compared with the original flexibility matrix based approach, the effect of truncating higher-
order modes can be considerably reduced in this new approach. In specific, this new approach even works with only the
first frequency and the corresponding mode shape. Finally, a numerical example for a simply supported beam is used to
illustrate the effectiveness of this proposed method.
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2. Damage detection method

2.1. The generalized flexibility matrix and its sensitivity

In this paper, it is assumed that structural damage does not cause mass variation but only a reduction in the structural
stiffness. It is further assumed that the number of degrees of freedom after damage remains unchanged. The damaged,
global structural stiffness matrix Kd is given by

Kd ¼Ku�DK (1)

where Ku is the undamaged n�n global structural stiffness matrices, n is the number of total degrees of freedom and DK is
the change in the global stiffness matrix.

Referring to the finite element method, a change in the global stiffness matrix can be described as the summation of
changes of the elemental stiffness matrices:

DK¼
XN

i ¼ 1

aiKui (2)

where N is the number of structural elements, ai is a scalar denoting the damage extent corresponding to the ith element
ð0rair1Þ and Kui is the n�n stiffness matrix of the ith element for the undamaged structure. Due to inevitable
measurement noise, the minor damage in global structure is usually undetected. Thus, in this paper, we only consider a
damage parameter aiZ0:05.

Substituting Eq. (2) into Eq. (1) and differentiating with respect to ai yield

@Kd

@ai
¼�Kui (3)

Defining Fd as an n�n flexibility matrix for the damaged structure, noting FdKd ¼ I (I is the n�n unit matrix) and
differentiating with respect to ai yield

@Fd

@ai
KdþFd

@Kd

@ai
¼ 0 (4)

Post-multiplying Eq. (4) by Fd and substituting Eq. (3) into it result in

@Fd

@ai
¼ FdKuiFd (5)

Based on mode shape normalization with respect to mass matrix, a new generalized flexibility matrix will be
introduced in this paper. Denoting M as the n�n global structural mass matrix, then the generalized flexibility matrix is
defined by

fg
dðaÞ ¼ FdðMFdÞ

l
¼UdK

�1
d UT

dðMUdK
�1
d UT

dÞ
l
¼UdK

�1�l
d UT

d , l¼ 0,1,2,. . . (6)

where Ud and Kd are the mode shape matrix and diagonal matrix of natural frequency squared, respectively, for the
damaged structure. From Eq. (6), it can be drawn that a larger l causes reduced contribution of higher-order mode. For l=0,
Eq. (6) reduces to the original flexibility matrix, namely Fd ¼UdK

�1
d UT

d . In this paper, only l=1 is considered.
For l=1, the generalized flexibility matrix in Eq. (6) becomes

fg
dðaÞ ¼ FdMFd ¼UdK

�1
d UT

dMUdK
�1
d UT

d ¼UdK
�2
d UT

d (7)

Differentiating Eq. (7) with respect to ai leads to

@fg
d

@ai
¼
@Fd

@ai
MFdþFdM

@Fd

@ai
(8)

Substituting Eq. (5) into Eq. (8) and setting ai ¼ 0 ði¼ 1,. . .,NÞ yield

@fg
d

@ai

�����ai ¼ 0

¼ FuKuiFuMFuþFuMFuKuiFu (9)

where Fu is the n�n flexibility matrix for the undamaged structure. Thus, sensitivity of the generalized flexibility matrix is
determined.

2.2. Structural damage detection method

In this paper, it is assumed that the measured mode shape vector has the same dimension as the analytical mode shape
vector. This assumption allows focus of attention on the quality of the proposed method.
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Making use of Taylor’s series expansion for fg
d at ai ¼ 0 ði¼ 1,. . .,NÞ, the first-order approximation to the generalized

flexibility matrix fg
d can be expressed as

fg
d � fg

uþ
XN

i ¼ 1

ai

@fg
d

@ai

�����ai ¼ 0

(10)

Substituting Eq. (9) into Eq. (10) and rearranging yield

Df ¼ fg
d�fg

u �
XN

i ¼ 1

aiðFuKuiFuMFuþFuMFuKuiFuÞ (11)

where fg
u ¼ FuMFu and Df is the change of the generalized flexibility matrix.

The generalized flexibility matrix can be approximately determined by using only a few of the lower frequency modes.
From Eq. (7), Df can be approximately expressed as

Df ¼ FdMFd�FuMFu �
Xm

j ¼ 1

1

o4
dj

UdjU
T
dj�

Xm

j ¼ 1

1

o4
uj

UujU
T
uj (12)

where odj and Udj are the jth frequency and the corresponding jth mode shape for the damaged structure, ouj and Uuj are
the jth frequency and the corresponding jth mode shape for the undamaged structure, m is the number of measured
modes. Then, the damage parameters can be calculated by manipulating Eqs. (11) and (12) into a system of linear
equations with respect to ai ði¼ 1,. . .,NÞ. Solving this system of linear equations using the least squares method, both
damage location and damage extent can be determined.

For the original flexibility matrix based approach, the change of flexibility matrix can be expressed as

DF¼ Fd�Fu �
Xm

j ¼ 1

1

o2
dj

UdjU
T
dj�

Xm

j ¼ 1

1

o2
uj

UujU
T
uj (13)

In Eq. (12), the jth term of Df is proportional to 1=o4
dj, while the jth term of DF is only proportional to 1=o2

dj. Therefore,
compared with the original flexibility matrix based approach, the effect of the truncating higher-order modes can be
considerably reduced in the proposed generalized flexibility method.

3. Numerical example

A simply supported beam with rectangular cross section shown in Fig. 1 is used to validate the proposed method. The
material and geometric constants are as follows: Young’s modulus E¼ 200GPa, density r¼ 7800kg=m3, length l=1 m,
Fig. 1. A simply supported beam.
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Fig. 2. Damage detection for case I without noise by using only the first mode.
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Fig. 3. Damage detection for case II without noise by using only the first mode.
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Fig. 4. Damage detection for case I by using only the first mode.
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cross sectional area A¼ 10mm� 50mm and second moment of area Iz ¼ 4:17� 10�9 m4. The total numbers of elements
and nodes are 20 and 21, respectively. Here, all degrees of freedom along the x-axis are ignored. Two damage cases are
studied in this example: case I, elements 2, 11 and 19 are damaged simultaneously with stiffness losses of 15%, 20% and
10%, respectively; and case II, only element 1 is damaged with a stiffness loss of 10%.

Solving Eqs. (11) and (12) with m=1, the damage locations and damage extents can be determined using only the first
frequency and the corresponding mode shape. For comparison, the damage locations and damage extents are also
calculated using the original flexibility matrix based approach with m=1. The results for cases I and II are shown in Figs. 2
and 3. Fig. 2 demonstrates that for case I, the original flexibility matrix based approach is unable to detect damages in
elements 2 and 19. Note that a damage parameter aiZ0:05 is considered in this paper. In contrast, the damage location can
be exactly detected by using the proposed generalized flexibility matrix method with only the first frequency and mode
shape. The damage extents detected are 0.1777, 0.2564 and 0.1120 for elements 2, 11 and 19, respectively. For case II, Fig. 3
indicates that the damage in element 1 cannot be detected by the original flexibility matrix based approach while, in
contrast, it can be accurately detected by using the generalized flexibility matrix method with only the first frequency and
mode shape. The damage extent in element 1 is 0.1093 which is very close to the actual damage extent 0.10. We also
assume the frequencies and mode shapes are contaminated with 1% and 5% random noises, respectively [9,10]. Figs. 4
and 5 are the results for cases I and II using generalized flexibility matrix method without noise and with noise,
respectively.
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Fig. 5. Damage detection for case II by using only the first mode.
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From the results above, it is clear that the proposed new method is very efficient with only the first frequency and
its corresponding mode shape. Accurate detection can also be determined even with noise contamination in the measured
data.

4. Conclusions

In this paper, a new efficient method of structural damage detection has been developed. The generalized flexibility
matrix is first introduced; its sensitivity and change are then used to detect the structural damage location and the damage
extent. Compared with the original flexibility matrix based approach, the effect of truncating higher-order modes can be
considerably reduced in the new method. The efficiency of the proposed method has been demonstrated using a simply
supported beam in the numerical example with only the lowest measured mode considered. From the numerical results, it
can be concluded that the proposed method is very efficient especially in determining the damage locations regardless of
the existence of a single damage or multiple damages. Numerical simulations show that the proposed method works well
even for data with noise.
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